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Abstract:

We test a 3+1 model with the MicroBooNE data using a 1µ1p selection developed using
Deep-Learning-based reconstruction. In order to test this model we apply a muon neutrino
disappearance effect to the selection, and search across a grid of oscillation model parame-
ters using a Feldman Cousins technique. We determine MicroBooNE’s sensitivity across this
model parameter space, and perform several validation studies to test this study’s robust-
ness. Finally, we examine the allowed and excluded regions per MicroBooNE’s data at 90%
confidence, using a data set corresponding to 6.67× 1020 protons on target. The null model
remains allowed, and several of the high-disappearance models are excluded.
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1 Introduction

Under the short-baseline assumption, the survival probability for muon neutrinos in a 3+1
sterile neutrino model is

Pνµ→νµ = 1− sin2 2θµµ sin
2(1.27∆m2

41L/E). (1)

Where ∆m2
41 is the mass splitting associated with the additional mass state, and sin2 2θµµ

is the term associated with the extension to the PMNS matrix under the 3+1 model. L
is the length of the baseline the neutrino has traveled in km, and E its energy in GeV.
This formula dictates the effects of muon neutrino disappearance, whereby muon neutrinos
oscillate through their connection to ν4 to some other flavor state. In particular this modeling
follows the ”short baseline approximation” where ∆m2

21 ≈ ∆m2
32 ≈ 0 when considering the

new mass states’ splitting from the standard model neutrinos ∆m2
41, as described in [1].

When used to model our expected spectrum of neutrino interactions based on simulated
data, both L and E are the true values for a given simulated neutrino event.

A 3+1 sterile neutrino model can be used to explain the νe-like low-energy excess (LEE)
observed in MiniBooNE [2] and LSND [3] via νe appearance phenomena [1]. This phe-
nomenology can be explained as muon neutrinos disappearing via oscillations then yielding
proportionally more νe. However, presently, muon neutrino disappearance via a 3+1 model
search has not been observed.

Within this note we search for muon neutrino disappearance in the MicroBooNE Liquid
Argon Time Projection Chamber (LArTPC) [4] using a selection of 1µ1p events produced
using a Deep Learning reconstruction for MicroBooNE’s first LEE search [5]. The recon-
struction and selection of these events is the first to utilize calorimetric energy reconstruction
via direct measurement of both the proton and muon, and the kinematics surrounding the
neutrino interaction in order to perform a sterile-neutrino-based disappearance oscillation
measurement. The resulting energy resolutions are 2.5 ± 0.1% for protons and 3.4 ± 0.1%
for muons [6]. In both cases the energies are calculated based on the length of the recon-
structed track length according to the stopping power of protons and muons. We note that
this analysis builds up from the work demonstrated in [7]. This analysis uses the 1µ1p event
selection described in [5], and the event simulation includes sophisticated modeling of meson
exchange current (MEC) interactions and other nuclear effects [5, 8]. This 1µ1p selection
is expected to be ∼ 98% pure in muon neutrino interactions, of which ∼ 75.2% are well-
reconstructed charged-current quasi-elastic νµ interactions. This selection is shown in Figure
1. The remaining ∼ 2% of events are primarily misreconstructed cosmic ray muon interac-
tions, with only ∼ 2 νe events out of ∼ 4480 total events predicted in a data set containing
6.67×1020 POT. As such, most of the spectrum is free to disappear. Using this selection and
Equation 1 we can oscillate the expectation across a variety of model parameters to acquire
the expectation under various 3+1 models.
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Figure 1: Stacked histogram of expectation binned in reconstructed νµ energy after final selection
and overlaid with data from Runs 1-3, corresponding to 6.67× 1020 POT [5].

2 Disappearance Search Window

Throughout this νµ disappearance search we will test the consistency of many different 3+1
sterile neutrino models with MicroBooNE data. We perform a 25×25 grid search over the two
parameters sin22θµµ and ∆m2

41, with points logarithmically spaced with sin2 2θµµ ∈ [0.01, 1]
and ∆m2

41 ∈ [0.01, 100] eV2. Table 1 shows the 25 bin center values of sin22θµµ and ∆m2
41

used in this grid search.
The sin22θµµ term in the disappearance formula controls the amplitude of the effect, while

the ∆m2
41 eV2 parameter effects the frequency of the oscillation. Figure 2 shows a cartoon

of this disappearance effect. The black curve shows the original expectation, the red curve
shows the portion of events that disappear, or Pµ→µ multiplied by the original flux, and the
blue curve shows the modified spectrum after disappearance beneath the original spectrum.
Note that the flux shown is not the Fermilab Booster Neutrino Beam (BNB) flux seen at
MicroBooNE and is instead designed for illustrative purposes.

Similarly, Figure 3 shows the same cartoon, with the only difference being that the bin
width is set to 50 MeV, this analysis’ histogram bin width. This width was chosen based on
the energy resolution demonstrated in [5]. Therefore this version of the cartoon demonstrates
the change in coarseness of the disappearance effect placed on the spectrum.

We create the ”maximally disappeared” spectrum for each of these 25 values of ∆m2
41

eV2, by setting sin22θµµ to the greatest bin value searched in this analysis, 0.912, to see the
greatest change possible within our search. These 25 spectra in blue, plotted against the null
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Bin Index ∆m2
41 eV2 sin22θµµ

1 0.012 0.011
2 0.017 0.013
3 0.025 0.016
4 0.036 0.019
5 0.052 0.023
6 0.076 0.028
7 0.110 0.033
8 0.158 0.040
9 0.229 0.048
10 0.331 0.058
11 0.479 0.069
12 0.692 0.083
13 1.000 0.100
14 1.445 0.120
15 2.089 0.145
16 3.020 0.174
17 4.365 0.209
18 6.310 0.251
19 9.120 0.302
20 13.183 0.363
21 19.055 0.437
22 27.542 0.525
23 39.811 0.631
24 57.544 0.759
25 83.176 0.912

Table 1: Bin centers for the two parameters in the fit ∆m2
41 eV2 and sin22θµµ.

4



Figure 2: A cartoon of the method by which one builds a νµ disappearance spectrum from an initial
prediction under the 3ν hypothesis. Note the flux shown is a cartoon, and not the BNB
flux.

Figure 3: Another cartoon of νµ disappearance, however now using 50-MeV-wide bins as will be
used in the data analysis. Note the flux shown is a cartoon, and not the BNB flux.

oscillation spectrum in black, are shown in Figure 4.
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Figure 4: For all 25 values of ∆m2
41, the predicted spectrum after disappearance is shown against

the null model spectrum. As sin22θµµ is an amplitude, the maximum grid value is used
for each plot to maximize the disappearance effect.

3 Negative Log Likelihood Ratio as a Test Statistic

This analysis’ test statistic is defined as the negative log likelihood ratio, termed R, defined
as

R ≡ −2ln(LPT/Lbf ) = χ2
PT + ln(|2πMPT |)− χ2

bf − ln(|2πMbf |). (2)

Here PT refers to the grid point in the 25× 25 grid we are testing and bf refers to the best
fit (minimum) negative-log-likelihood when comparing an observation to all the grid points.
M is the covariance matrix encapsulating the uncertainties associated with the selection, as
described below, and χ2 is defined as

χ2(Θ) =
bins∑
ij

(N obs
i −Npred

i (Θ))M−1
ij (N obs

j −Npred
j (Θ)), (3)
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where Θ refers to the disappearance model being examined, and N refers to the number of
events in a given bin for the prediction or observation depending on superscript.

4 Analysis Uncertainty

The total fractional covariance matrix from the systematic uncertainties is shown in Figure
5, reproduced from [5]. This fractional matrix gets scaled to the different expectations when
appropriate, whether they are the null model expectation or some disappeared spectrum. As
such, smaller applied expectations receive smaller absolute uncertainties. We also examine
the uncorrelated fractional uncertainty broken down by type across the analysis energy range,
in Figure 6. Explanations of these different sources of uncertainty are provided in [5].

Figure 5: The total, fractional systematic covariance matrix for the 1µ1p analysis.
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Figure 6: The uncorrelated fractional systematics broken down by type. The statistical uncertainty
associated with the expectation samples is also shown for comparison.

5 Determining a Sensitivity

We calculate the test statistic, R for every point in grid space. We can determine this analysis’
sensitivity to a parameter exclusion region by setting the ‘observation’ to exactly the null
expectation. The array of test R values is shown in Figure 7, both in linear and logarithmic
z-axis scale. Higher values of R indicate a greater disparity between the observation from
this grid point’s expectation compared to the observation’s best fitting model. Note that
the null model is effectively at the bottom-left of the these style plots, with both oscillation
parameters effectively 0. We note that this estimator, the negative-log-likelihood-ratio, has
a bias towards preferring spectra with fewer events. This comes about from the determinant
term in the calculation which favors lower spectra, and results in a best fit different than the
null expectation when inputting the null as observation. However, the bias toward a smaller
spectrum cannot be too high, or else it will be offset by the χ2 terms in the test statistic. In
this sensitivity test, the best fit ends up in a region of models that all appear similar to the
null expectation, and separate from the high-disappearance region which the analysis expects
to be able to exclude.

The R values in this plot demonstrate how different the null observation is from a point’s
expectation compared to its best fit expectation. Note that much of the search is a region of
low R values, where the null observation is not very different from the expectation. Within
this degeneracy of models we expect little discrimination power. Instead, we expect greater
power in the high R value region.

We use a Feldman Cousins-based frequentist analysis to determine the critical values to
which these test R values can be compared to in order to determine the sensitivity region. We
throw 1000 ”universes” using the covariance matrix at each point of parameter space. Each
universe is treated as an observation, then its R value is calculated. The critical threshold,
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Figure 7: The test R values across every point in the parameter space. The left plot displays the
raw R value, while the right shows the same values at log scale.

RC , is the value below which 90% of calculated R values in the 1000 universe distribution
fall. This process is depicted in Figure 8. Instead of using the Feldman Cousins method,
one could use Wilks’ theorem to assume that R follows a χ2 distribution with 2 degrees of
freedom. The Feldman Cousins calculated RC values are shown in Figure 9, which also shows
a comparison to the Wilks’ 2 degree of freedom threshold of 4.6. This comparison plot shows
the fractional difference to the 4.6 threshold, and where it is non-zero the Feldman Cousins
and Wilks’ values differ.

Figure 8: The distribution of R across 1000 pseudo-experiments for the null, no-disappearance,
hypothesis as ΘT , shown in blue. The plot also contains the expected χ2 distribution for
two degrees of freedom. Vertical lines are drawn for the 90% CL of each distribution,
such that 90% of the distribution is to the left of the vertical line.

This resulting sensitivity contour borders the region where the test R values are greater
than the RC values. This is shown in Figure 10. MiniBooNE’s sensitivity is also shown [9].
We also produce two additional sensitivities: one assuming MicroBooNE had no systematic
uncertainty (Figure 11) and another assuming MicroBooNE had 40× the present data statis-
tics (Figure 12). This factor of 40 was chosen because it represents the difference in number
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Figure 9: The critical R values for 90% CL across every point in this parameter space. The left
plot displays the raw RC value, while the right shows the fractional difference in RC from
a 2-degree-of-freedom scenario.

of events used in the MiniBooNE analysis compared to this analysis. These demonstrate
that while the analysis could be improved by adding more statistics, or reducing systematic
uncertainty, it is more limited by the systematic uncertainty. Lastly, a sensitivity is also
calculated as though this analysis only had one energy bin, thereby acting as a ‘rate-only’
study, where oscillation shape information is invisible. This is shown in Figure 13. This final
sensitivity uses an RC of 4.6, via Wilks’ theorem, which expects the R distribution to follow
a χ2 distribution, rather than recompute the RC via Feldman Cousins method for a 1-bin
analysis.
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Figure 10: MicroBooNE’s 90% sensitivity contour for the parameter-space scan is shown, using the
Feldman Cousins method of determining RC . MiniBooNE’s νµ disappearance sensitivity
is overlaid [9].

11



Figure 11: For the stats-only regime, MicroBooNE’s 90% sensitivity contour for the parameter-
space scan is shown, using the Feldman Cousins method of determining RC . Both the
MicroBooNE full sensitivity, and MiniBooNE’s νµ disappearance sensitivity are over-
laid [9], both of which include full evaluation of systematic uncertainties.
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Figure 12: For the 40x scaled regime, MicroBooNE’s 90% sensitivity contour for the parameter-
space scan is shown, using the Feldman Cousins method of determining RC . Both the
full MicroBooNE sensitivity for 6.67 × 1020 POT and MiniBooNE’s νµ disappearance
sensitivity are overlaid [9].
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Figure 13: For the 1-bin, rate-only analysis MicroBooNE’s 90% sensitivity contour for the
parameter-space scan is shown, using Wilks’ method of determining RC = 4.6 (2 degrees
of freedom). Both this standard Wilks’ sensitivity and MiniBooNE’s νµ disappearance
frequentist sensitivity are overlaid [9].
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6 Results: Muon Neutrino Disappearance Search using

MicroBooNE Data

In this final section we perform the disappearance search using the first three years of Micro-
BooNE data, corresponding to 6.67× 1020 protons on target. We now treat this observation
as the data shown in Figure 1. Now the grid of Rdata values is shown in Figure 14. While the
best fit model is that of grid point sin2(θµµ) = 0.12 and ∆m2

41 = 3.02 eV2, this point exists
within a wide region of models where we cannot discriminate the expectation from the null
model. Recall that the test statistic used in this analysis has a slight bias towards spectra
with fewer events (i.e. more disappearance). Figure 15 compares the best fit spectrum in red
to the null expectation in blue with uncertainty bands. The data is also plotted in black.

Figure 14: This grid of Rdata values, where we input the data as the observation.

We can look at the breakdown of this calculation of R in table 2. We see there that the
best fit model has a slightly lower ln(|2πM |) term than the null model, and the model has
a slightly lower χ2 term. However, the difference in ln(|2πM |) slightly outweighs that of the
χ2 term.

Finally, in Figure 16 we show the allowed (green) and excluded (white) regions of the
model parameter phase space from this shape and rate, Feldman Cousins frequentist analy-
sis. We overlay the MiniBooNE analysis’ shape-only frequentist excluded region in red, which
generally extends further than this analysis’ exclusion curve. This analysis’ sensitivity curve
is also overlaid in blue. This exclusion area in white extends a bit past the sensitivity band.
This is likely due to the fact that the observed data spectrum is in excess compared to the
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Figure 15: The different spectra of selected neutrinos. In blue the Null model expectation, with
the uncertainty band surrounding it, in black the data, and in red the best fitting 3+1
sterile neutrino model.

expectation, as shown in Figure 15, which makes it easier to discriminate the observation
from the heavier disappearance expectations. Specifically, because the disappeared expecta-
tion can only go down, having an observation greater than the null allows us to exclude a
larger amount of phase space by putting more distance between the observation and various
disappeared expectations. The null model is in agreement with MicroBooNE’s data, and is
still allowed. Our analysis’ agreement with the null model has a p-value of 0.291.

Null Oscillation Model Best Fit Model Difference

ln(|2πM |) 153.58 151.59 1.99
χ2 21.10 22.22 -1.12

Total 174.68 173.81 0.87

Table 2: The breakdown of components of the test statistic R for the best fit point and the null
oscillation model.
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Figure 16: Using 6.67× 1020 POT worth of MicroBooNE data we show the allowed regions of 3+1
model phase space in green, and the excluded region in white in the upper right of the
plot, with sensitivity overlaid in blue. The MiniBooNE shape-only analysis’ excluded
curve is also overlaid in red [9].

7 Conclusions

We present a muon neutrino disappearance search using 6.67 × 1020 POT worth of data in
the MicroBooNE detector. MicroBooNE’s observation is consistent with νµ disappearance
results from other experiments, and adds the power of the MicroBooNE experiment to the
search for a potential 3+1 sterile neutrino model. In particular this analysis benefits from the
strong energy reconstruction of both the outgoing proton and muon in this 1µ1p interaction,
via the calorimetric power of the MicroBooNE Liquid Argon Time Projection Chamber. We
demonstrate this new robust detector technology can be used in a sterile-based oscillation
study.
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